|                                     |                      |             |             |        |                       |            |                                                                            | E · · · 3                                                          |
|-------------------------------------|----------------------|-------------|-------------|--------|-----------------------|------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|
| Fall Term End Exam for IPSE of CSE, |                      |             |             | 3      | 30th, Jan., Wednesday |            |                                                                            | From: 15:00, To:16:30                                              |
| Subject                             | Instructor           | Department, | Year        |        | ite                   | JCe        | Reference tools are                                                        | 1. Free<br>2. Nothing                                              |
| Soil Mechanics                      | H.Akagi Civil & Env. |             | 2<br>Answei | Separa | Referen               | admission. | 3.)<br>Partly allowed<br>· <del>Textbook</del> · <del>Reference book</del> |                                                                    |
| Student<br>ID                       |                      | Name        |             |        |                       |            | Mark                                                                       | • Calculator<br>• <del>Dictionary</del><br>• <del>Othors</del> [ ] |

Answer all questions (1) ~ (5) on the separate answer sheet. The density of water is  $\rho_w = 1.00 (g/cm^3)$  and the water unit weight is  $\gamma_w = 9.81 (kN/m^3)$ . Specific volume of soil  $v = V/V_s$  and void ratio of soil  $e = V_v/V_s$ , in which V is the volume of soil,  $V_v$  is the void volume of soil and  $V_s$  is the volume of soil particle.

(1) In a stage of an oedometer test of clay specimen, the total stress was raised by 100kPa. The clay specimen was initially 40 mm thick and it was drained from both ends. The consolidation properties of the clay are given as follows,  $c_v = 2(\text{m}^2/\text{year})$  and  $m_v = 5 \times 10^{-4} (\text{m}^2/\text{kN})$ . Find the following values. The relationship between the time factor  $T_v$  (= $c_v t/H^2$ , H: Drainage path) and the degree of consolidation  $U_t$  at time t is given by the following equation.  $U_t = 2\sqrt{T_v/3}$ 

(a) The final settlement of specimen  $S_f$  (mm), after the consolidation is complete.

(b) The elapsed time *t*(min.) from the loading, when the settlement is 0.50mm.

volume of sample was  $V_0=88.46$  cm<sup>3</sup> and specific volume value was  $v_0=2.19$ .



1) A drained triaxial compression test was carried out with a sample of saturated clay. The cell

When the axial stress is  $\sigma_1$ =400kPa, the total volume is V=87.58cm<sup>3</sup>. In this situation, pore pressure is

 $u = (\underline{a})kPa$  and specific volume value is  $v = (\underline{b})$  and void ratio is  $e = (\underline{c})$ . The average stress is

2) <u>An undrained triaxial compression test</u> was carried out with a sample of saturated clay. The cell pressure was held constant at  $\sigma_3$ =300kPa. At the start of the test, pore pressure was  $u_0$ =100kPa, Total

When the axial stress is  $\sigma_1$ =350kPa, pore pressure is u= 165kPa. In this situation, the total soil volume is V=(f)cm<sup>3</sup> and specific volume value is v = (g) and void ratio is e = (h). The average

pressure was held constant at  $\sigma_3$ =300kPa during the test. At the start of the test, pore pressure was

 $u_0=100$ kPa, Total volume of sample was  $V_0=88.46$ cm<sup>3</sup> and specific volume value was  $v_0=2.19$ .

(2) Fill the blanks (<u>a</u>) to (<u>j</u>) with appropriate values.

 $p'=(\underline{d})\mathbf{kPa}$  and deviation stress is  $q'=(\underline{e})\mathbf{kPa}$ .

No 1/1









 $\gamma_{sat2} = 19.8 \text{ kN/m}^3, c = 0, \phi = 32^\circ$ 

Fig.3

Table 1 Bearing factors  $(N_q^*=N_q+2)$ 

| 53   |                                                          |                                                                                                                                                                               |                                                                                                                                                                                                    |
|------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0  | 0                                                        | 1.0                                                                                                                                                                           | 3.0                                                                                                                                                                                                |
| 5.3  | 0                                                        | 1.4                                                                                                                                                                           | 3.4                                                                                                                                                                                                |
| 5.3  | 0                                                        | 1.9                                                                                                                                                                           | 3.9                                                                                                                                                                                                |
| 6.5  | 1.2                                                      | 2.7                                                                                                                                                                           | 4.7                                                                                                                                                                                                |
| 7.9  | 2.0                                                      | 3.9                                                                                                                                                                           | 5.9                                                                                                                                                                                                |
| 9.9  | 3.3                                                      | 5.6                                                                                                                                                                           | 7.6                                                                                                                                                                                                |
| 11.4 | 4.4                                                      | 7.1                                                                                                                                                                           | 9.1                                                                                                                                                                                                |
| 20.9 | 10.6                                                     | 14.1                                                                                                                                                                          | 16.1                                                                                                                                                                                               |
| 42.2 | 30.5                                                     | 31.6                                                                                                                                                                          | 33.6                                                                                                                                                                                               |
| 95.7 | 114.0                                                    | 81.2                                                                                                                                                                          | 83.2                                                                                                                                                                                               |
|      | 5.3<br>6.5<br>7.9<br>9.9<br>11.4<br>20.9<br>42.2<br>95.7 | 5.3       0         6.5       1.2         7.9       2.0         9.9       3.3         11.4       4.4         20.9       10.6         42.2       30.5         95.7       114.0 | $\begin{array}{ccccccc} 5.3 & 0 & 1.9 \\ 6.5 & 1.2 & 2.7 \\ 7.9 & 2.0 & 3.9 \\ 9.9 & 3.3 & 5.6 \\ 11.4 & 4.4 & 7.1 \\ 20.9 & 10.6 & 14.1 \\ 42.2 & 30.5 & 31.6 \\ 95.7 & 114.0 & 81.2 \end{array}$ |

 $q_{c} = \alpha c N_{c} + \gamma_{t1} D_{f} N_{q} + \beta \gamma_{t2} ' B N_{\gamma} (\text{kN/m}^{2})$ 

(3) Calculate the safety factor F<sub>s</sub> of the slope against planar slip surface as shown in Fig.1. The assumed planar slip surface is located in the depth of 4m.
(4) Calculate the force due to active earth pressure P<sub>A</sub>(kN/m) and the force due to passive earth pressure P<sub>P</sub>(kN/m) acting on the retaining wall shown in Fig.2. The friction angle of soil

behind the wall is  $\varphi = 20^{\circ}$  and the unit weight of soil is  $\gamma_t = 17.0 \text{kN/m}^3$ . The friction angle of wall surface is  $\delta = 0^{\circ}$ .

(5) Fill the blanks  $(\underline{a})$  to  $(\underline{f})$  with appropriate values.

stress is  $p'=(\underline{i})kPa$  and deviation stress is  $q'=(\underline{j})kPa$ .

The ultimate and allowable bearing capacities are calculated for the foundation in Fig.3. The foundation shape is square. Then, shape factors  $\alpha$  and  $\beta$  are 1.3 and 0.4, respectively. The bearing factors  $N_c$ ,  $N_q$  and  $N_\gamma$  are obtained from Table 1 as (**a**), (**b**) and (**c**), respectively. The water table is located at the level of the base of foundation. Then,  $\gamma_{t2}$ ' is (**d**)**k**N/m<sup>3</sup> when  $\gamma_w$  is 9.81kN/m<sup>3</sup>. The ultimate bearing capacity  $q_c$  is (**e**) **k**N/m<sup>2</sup>.

When the factor of safety  $F_s$  is equal to 3, the allowable bearing capacities  $q_a$  is <u>(f)</u> kN/m<sup>2</sup>. End of questions.

30th, January, 15:00~16:30

International Program, Department of Civil and Environmental Engineering Answer sheet for Fall Term End Exam, Soil Mechanics, 2012

| Stude | nt ID Name Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |       | ark |      |     |                       |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|-----|------|-----|-----------------------|--|--|
| (1)   | $ \begin{array}{l} (a)S_{f}=40(mm)\times5\times10^{-4}(m^{2}/kN)\times100(m^{2}/kN)=2(mm) \\ (b)U_{t}=0.5(mm)/2(mm)=0.25,  T_{v}=3\times\left(\frac{0.25}{2}\right)^{2}=0.047,  t=\frac{0.047\times(0.02)^{2}(m^{2})}{\frac{2}{60\times24\times365}\left(\frac{m^{2}}{min}\right)}=4.9(mm) \\ (c)T_{v}=\frac{\frac{2}{60\times24\times365}\left(\frac{m^{2}}{min}\right)\times30(min)}{(0.02)^{2}(m^{2})}=0.29,  U_{t}=2\sqrt{\frac{0.29}{3}}=0.62, \\ S_{t}=0.62\times2(mm)=1.24(mm) \end{array} $ |       |     |       |     |      |     |                       |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |       |     |      | n   | 4×5=20                |  |  |
|       | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100   | (b) | 2.17  | (c) | 1.17 | (d) | 233                   |  |  |
| (2)   | (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100   | (f) | 88.46 | (g) | 2.19 | (h) | 1.19                  |  |  |
|       | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152   | (j) | 50    |     |      |     | 2×10=20               |  |  |
| (3)   | (3) $\sigma = \gamma_{t} \cdot Z \cdot \cos^{2}\beta  \tau = \gamma_{t} \cdot Z \cdot \sin\beta \cdot \cos\beta$ $F_{s} = \frac{\tau_{f}}{\tau} = \frac{c + \gamma_{t} \cdot Z \cdot \cos^{2}\beta \cdot \tan\phi}{\gamma_{t} \cdot Z \cdot \sin\beta \cdot \cos\beta} = \frac{2c}{\gamma_{t} \cdot Z \cdot \sin2\beta} + \frac{\tan\phi}{\tan\beta} = \frac{2 \times 10}{17.7 \times 4 \times \sin50^{\circ}} + \frac{\tan20^{\circ}}{\tan25^{\circ}} = 1.15$ $10 \times 2 = 20$                   |       |     |       |     |      |     |                       |  |  |
| (4)   | $P_{A} = \frac{1}{2} \times \gamma_{t} \cdot H^{2} \times \tan^{2} \left( 45^{\circ} - \frac{\phi}{2} \right) = \frac{1}{2} \times 17 \times 36 \times \tan^{2}(45^{\circ} - 10^{\circ}) = 150 (kN/m)$ $P_{p} = \frac{1}{2} \times \gamma_{t} \cdot H^{2} \times \tan^{2} \left( 45^{\circ} + \frac{\phi}{2} \right) = \frac{1}{2} \times 17 \times 36 \times \tan^{2}(45^{\circ} + 10^{\circ}) = 624 (kN/m)$ $10 \times 2=20$                                                                      |       |     |       |     |      |     |                       |  |  |
| (5)   | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.9  | (b) | 14.1  | (c) | 10.6 | (d) | 9.99                  |  |  |
|       | (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 338.5 | (f) | 124.8 |     |      |     |                       |  |  |
|       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     | l     |     |      |     | $2 \times 6 + 2 - 20$ |  |  |

 $3 \times 6 + 2 = 20$ 

 $20 \times 5 = 100$ 

School of Creative Science and Engineering, Waseda University