Mid Fall Term Exa	m for IPS	SE of CSE,	2013	20th,	Nov., Wednesday	From: 18:15, To:19:45
Subject	Instructor	Department,	Year	ate	Reference tools are	1. Nothing 2. Free
Soil Mechanics	H. Akagi	Civil & Env.	2	Answer Separate Reference	not allowed without admission.	3. Partly allowed •Textbook • Reference book
Student ID		Name			Mark	• Calculator • Dictionary • Others []

Answer all questions (1) \sim (5) on the separate answer sheet. The density of water is $\rho_w=1.00(g/cm^3)$ and the water unit weight is $\gamma_w=9.81(kN/m^3)$.

(1) A 1.50 (kg) of dry soil is poured into a Eureka can and displaces 600 (cm³) of water (see Fig. 1). Find the density of soil particles ρ_s (g/cm³).

A 160 (g) of the same dry soil is poured uniformly into an empty impermeable

Fig.2

metal container and occupied 180 (cm³) (see Fig.2). The area of the inside cross section of the container is

(2) Table 1 shows the results of the density test and water contents test of soil.

A=30.0 (cm²). Find the void ratio e of the dry soil in the container.

Find the density of soil particle $\rho_s(g/cm^3)$, wet density of soil $\rho_t(g/cm^3)$, water content w(%), dry density of soil $\rho_d(g/cm^3)$, void ratio e and saturation ratio $S_r(\%)$.

- **(3)** Fig. 2 shows the state of stresses in an element of soil. (Positive shear stress and angles indicate counterclockwise direction.)
- 1) Calculate the maximum and minimum principal stresses $\sigma_1(kPa)$ and $\sigma_3(kPa)$.
- 2) Calculate the angle α (degrees) formed by the plane of the maximum principal stress and the horizontal plane.
- 3) The angle between plane A and horizontal plane within an element of soil is +45 degrees as shown in Fig. 2. Calculate normal and shear stresses $\sigma_A(kPa)$ and $\tau_A(kPa)$ acting on the plane A.

Types of test Results Density of grains Volume of the soil particle 11.00 cm^3 Water content Mass of the wet specimen and container 92.50 g Wet density Mass of the specimen and container after drying at 105°C 78.90 g 49.30 g Mass of the container 26.20 cm^3 Volume of the wet specimen

Table 1

- **(4)** The clay deposit in Fig.3 has unit weight $\gamma_{\text{sat}}=20(\text{kN/m}^3)$ and the soil remains saturated if the pore pressures become negative.
- 1) When water table is 6 m below ground level as shown in Fig.3(a), find the normal effective stress $\sigma'_{zA}(kN/m^2)$ at a depth of 3m.
- 2) When water table is 3 m above ground level as shown in Fig.3(b), find the normal effective stress $\sigma'_{zB}(kN/m^2)$ at a depth of 3m.
- **(5)** Fig.4 shows the one-dimensional water flow in the sand specimen. Datum line of potential water head *z* is at the central depth of the sand specimen.

Find the total water head $h_a(m)$, $h_b(m)$ and water flow volume $Q(m^3/s)$. End of questions.

Fig.3

(b)

Fig.4

International Program, Department of Civil and Environmental Engineering
Answer sheet for Mid Fall Term Exam, Soil Mechanics, 2013

Student ID _____ Name ____ Mark ____

Question No. (1)

$$\rho_{\rm s} = \frac{1500(\rm g)}{600(\rm cm^3)} = 2.5(\rm g/cm^3),$$

Question No. (2)

$$\rho_s = \frac{78.90 - 49.30}{11.00} \doteqdot 2.69 (g/cm^3), \qquad \rho_t = \frac{92.50 - 49.30}{26.20} = 1.65 (g/cm^3),$$

$$w = \frac{92.50 - 78.90}{78.90 - 49.30} \times 100 = 45.9(\%), \quad \rho_{d} = \frac{78.90 - 49.30}{26.20} = 1.138(g/cm^{3}),$$

$$e = \frac{26.20 - 11.00}{11.00} = 1.38, \qquad Sr = \frac{92.50 - 78.90}{26.20 - 11.00} \times 100 = 89.5(\%)$$

Question No. (3)

$$\begin{split} (1)\sigma_1 &= 600 (kPa), \sigma_3 = 200 (kPa), \\ (2)2\alpha &= +60^\circ \quad \alpha = +30^\circ \quad , \\ (3)\sigma_A &= 400 + 100\sqrt{3} (kPa), \\ \tau_A &= 100 (kPa) \end{split}$$

 $4\times5=20$

Question No. (4)

$$\begin{split} (1)\sigma_{zA} &= 20.0\times 3 = 60(kN/m^2), \quad u_A = -29.4(kN/m^2) \,, \\ \sigma'_{zA} &= 60 - (-29.4) = 89.4(kN/m^2), \\ (2)\sigma_{zB} &= 9.81\times 3 + 20.0\times 3 = 89.4(kN/m^2), \\ u_B &= 9.81\times 6 = 58.9(kN/m^2) \,, \\ \sigma_{'zB} &= 89.4 - 58.9 = 30.5(kN/m^2), \\ 10\times 2 &= 20.0 \,. \end{split}$$

Question No. (5)

$$h_a = 0 + 10(m) = 10(m), h_b = 5(m),$$

$$Q = 0.05(\frac{m}{s}) \times 10(m^2) \times \frac{10-5}{5} = 0.5(m^3/s)$$

 $3 \times 6 + 2 = 20$