
NO. 1 / 1									[]	5]
Fall Term End Exa	am for IPS	SE of CSE,	2013	30	0th	, J	an.,	Thursday	From: 13:00, To:14:	30
Subject	Instructor	Department,	Year	<u>ر</u>	ate	ence		nce tools are	1. Free 2. Nothing	
Soil Mechanics	H. Akagi	H.Akagi Civil & Env. 2		Separa Referen	not allowed without admission.		3.)Partly allowed · Textbook · Reference book			
Student ID		Name					Mark		• Calculator • Dictionary • Others ()

Answer all questions (1) ~ (5) on the separate answer sheet. The density of water is $\rho_w = 1.00 (g/cm^3)$ and the water unit weight is $\gamma_w = 9.81 (kN/m^3)$. Specific volume of soil $v = V/V_s$ and void ratio of soil $e = V_v/V_s$, in which V is the volume of soil, V_v is the void volume of soil and V_s is the volume of soil particle.

(1) In a stage of an oedometer test of clay specimen, the total stress was raised by 100kPa. The clay specimen was initially 20 mm thick and it was drained from both ends. The consolidation properties of the clay are given as follows, $c_v = 2(\text{m}^2/\text{year})$ and $m_v = 5 \times 10^{-4} (\text{m}^2/\text{kN})$. Find the following values. The relationship between the time factor T_v (= $c_v t/H^2$, H: Drainage path) and the degree of consolidation U_t at time t is given by the following equation. $U_t = 2\sqrt{T_v/3}$

(a) The final settlement of specimen S_f (mm), after the consolidation is complete.

(b) The elapsed time *t*(min.) from the loading, when the settlement is 0.50mm.

1) A drained triaxial compression test was carried out with a sample of saturated clay. The cell

When the axial stress is σ_1 =400kPa, the total volume is V=190.0cm³. In this situation, pore pressure is

2) An undrained triaxial compression test was carried out with a sample of saturated clay. The cell

pressure was held constant at σ_3 =300kPa. At the start of the test, pore pressure was u_0 =100kPa, total

When the axial stress is σ_1 =350kPa, pore pressure is u= 165kPa. In this situation, the total soil

volume is $V = (\underline{\mathbf{f}}) \mathbf{c} \mathbf{m}^3$ and specific volume value is $v = (\underline{\mathbf{g}})$ and void ratio is $e = (\underline{\mathbf{h}})$. The average

(3) Calculate the safety factor F_s of the slope against planar slip surface as shown in Fig.1. The

(4) Calculate the force due to active earth pressure $P_A(kN/m)$ and the force due to passive

earth pressure $P_P(kN/m)$ acting on the retaining wall shown in Fig.2. The friction angle of soil

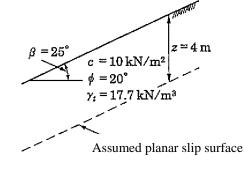
volume of sample was $V_0=196.0$ cm³ and specific volume value was $v_0=2.20$.

pressure was held constant at σ_3 =300kPa during the test. At the start of the test, pore pressure was u_0 =100kPa, total volume of sample was V_0 =196.0cm³ and specific volume value was v_0 =2.20.

 $u = (\underline{a})kPa$ and specific volume value is $v = (\underline{b})$ and void ratio is $e = (\underline{c})$. The average stress is

(2) Fill the blanks (<u>a</u>) to (<u>j</u>) with appropriate values.

 $p'=(\underline{d})\mathbf{kPa}$ and deviation stress is $q'=(\underline{e})\mathbf{kPa}$.


stress is $p'=(\underline{i})kPa$ and deviation stress is $q'=(\underline{j})kPa$.

assumed planar slip surface is located at the depth of 4m.

 $\delta = 0^{\circ}$.

(e) kN/m².

 $N_{0} = 1 / 1$

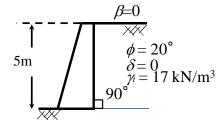
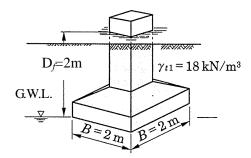



Fig.2

 $\gamma_{sat2} = 19.8 \text{ kN/m}^3, c = 0, \phi = 32^\circ$

Fig.3

Table 1 Bearing factors ($N_q^* = N_q + 2$)

φ	Nc	Nγ	N_q	N_q^*	
0*	5.3	0	1.0	3.0	
5°	5.3	0	1.4	3.4	
10°	5.3	0	1.9	3.9	
15°	6.5	1.2	2.7	4.7	
20°	7.9	2.0	3.9	5.9	
25°	9.9	3.3	5.6	7.6	
28°	11.4	4.4	7.1	9.1	
32°	20.9	10.6	14.1	16.1	
36°	42.2	30.5	31.6	33.6	
40°以上	95.7	114.0	81.2	83.2	

 $q_c = \alpha c N_c + \gamma_{t1} D_f N_q + \beta \gamma_{t2} ' B N_{\gamma} (\text{kN/m}^2)$

(5) Fill the blanks (<u>a</u>) to (<u>f</u>) with appropriate values. The ultimate and allowable bearing capacities are calculated for the foundation in Fig.3. The foundation shape is square. Then, shape factors α and β are 1.3 and 0.4, respectively. The bearing factors N_c , N_q and N_y are obtained from Table 1 as (<u>a</u>), (<u>b</u>) and (<u>c</u>), respectively. The water table is located at the level of

the base of foundation. Then, γ_{t2} is (d) kN/m^3 , when γ_w is 9.81 kN/m^3 . The ultimate bearing capacity q_c is

behind the wall is $\varphi = 20^{\circ}$ and the unit weight of soil is $\gamma_t = 17.0 \text{kN/m}^3$. The friction angle of wall surface is

When the factor of safety F_s is equal to 3, the allowable bearing capacities q_a is (f) kN/m².

School of Creative Science and Engineering, Waseda University

International Program, Department of Civil and Environmental Engineering Answer sheet for Fall Term End Exam, Soil Mechanics, 2013

Stude	Student ID Name					Mark				
(1)	(b)U _t =	= 0.5(mm)/1(mm) =	: 0.5,	$\frac{m^2/kN}{T_v} \times 100(kN/m^2)$ $T_v = 3 \times \left(\frac{0.5}{2}\right)^2 = 0.$ $\frac{min}{T_v} = 0.38, \qquad U_t = 0.38$	1875,	$t = \frac{0.1875 \times (0.01)}{\frac{2}{60 \times 24 \times 365}}$				
(0)	(a)	100	(b)	2.13	(c)	1.13	(d)	233		
(2)	(e) (i)	100	(f) (j)	196.0 50	(g)	2.20	(h)	1.20		
(3)	$\sigma = \gamma_t \cdot Z \cdot \cos^2 \beta \tau = \gamma_t \cdot Z \cdot \cos \beta \cdot \sin \beta$ $F_s = \frac{\tau_f}{\tau} = \frac{c + \gamma_t \cdot Z \cdot \cos^2 \beta \cdot \tan \varphi}{\gamma_t \cdot Z \cdot \sin \beta \cdot \cos \beta} = \frac{10 + 17.7 \times 4 \cdot \cos^2 25^\circ \cdot \tan 20^\circ}{17.7 \times 4 \cdot \cos 25^\circ \cdot \sin 25^\circ} = \frac{31.2}{27.1} = 1.15$									
(4)	$P_{A} = \frac{1}{2} \times \gamma_{t} \cdot H^{2} \times \tan^{2} \left(45^{\circ} - \frac{\phi}{2} \right) = \frac{1}{2} \times 17.0 \times 5^{2} \times \tan^{2} (45^{\circ} - 10^{\circ}) = 104 (kN/m)$ $P_{p} = \frac{1}{2} \times \gamma_{t} \cdot H^{2} \times \tan^{2} \left(45^{\circ} + \frac{\phi}{2} \right) = \frac{1}{2} \times 17.0 \times 5^{2} \times \tan^{2} (45^{\circ} + 10^{\circ}) = 433 (kN/m)$									
(5)	(a)	20.9	(b)	14.1	(c)	10.6	(d)	9.99		
	(e)	592.3	(f)	221.4						

 $4 \times 24 + 4 = 100$

School of Creative Science and Engineering, Waseda University