

(1) A 1.50 (kg) of dry soil is poured into a Eureka can and displaces 600 (cm³) of water (see Fig. 1). Find the density of soil particles ρ_s (g/cm³).

A 160 (g) of the same dry soil is poured

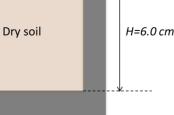


Fig.2

uniformly into an empty impermeable metal container and occupied 180 (cm³) (see Fig.2). The area of the inside cross section of the container is

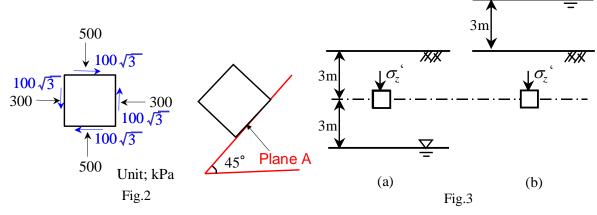
A= 30.0 (cm^2). Find the void ratio *e* of the dry soil in the container.

(2) Table 1 shows the results of the density test and water contents test of soil.

Find the density of soil particle $\rho_s(g/cm^3)$, wet density of soil $\rho_t(g/cm^3)$, water content w(%), dry density of soil $\rho_d(g/cm^3)$, void ratio e and saturation ratio $S_r(\%)$.

(3) Fig. 2 shows the state of stresses in an element of soil. (Positive shear stress and angles indicate counterclockwise direction.)

 Calculate the maximum and minimum principal stresses σ₁(kPa)and σ₃(kPa).


2) Calculate the angle α(degrees) formed by the plane of the maximum principal

stress and the horizontal plane.
3) The angle between plane A and horizontal plane within an element of soil is +45 degrees as shown in Fig. 2. Calculate normal and shear stresses σ_A(kPa) and τ_A(kPa) acting on the plane A.

 $\sigma'_{zA}(kN/m^2)$ at a depth of 3m.

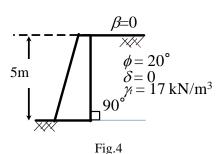
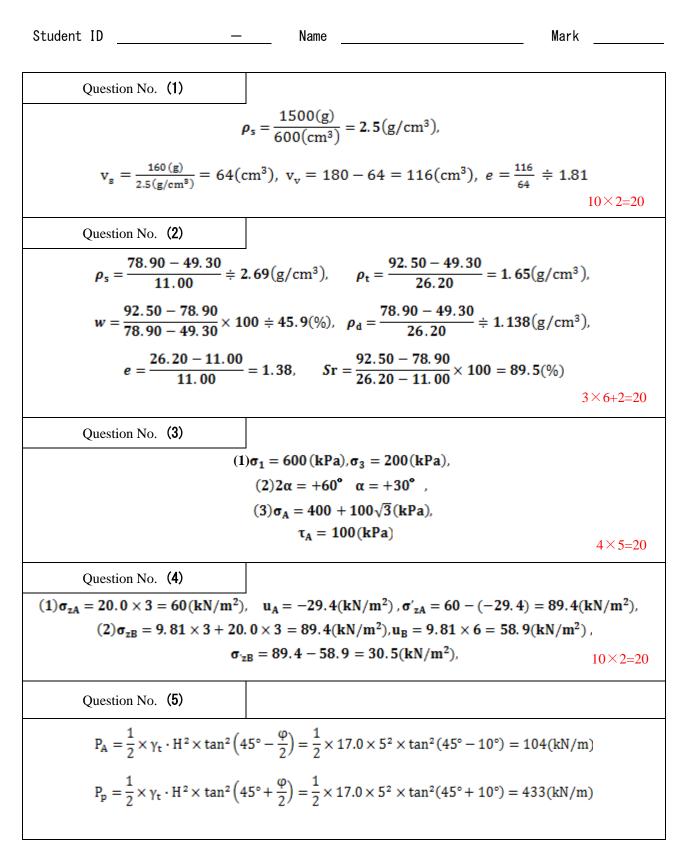

Types of test Results 11.00 cm^3 Density of grains Volume of the soil particle Water content Mass of the wet specimen and container 92.50 g Wet density Mass of the specimen and container after drying at 105°C 78.90 g Mass of the container 49.30 g Volume of the wet specimen 26.20 cm^3

Table 1

(4) The clay deposit in Fig.3 has unit weight $\gamma_{sat}=20(kN/m^3)$ and the soil remains saturated if the pore pressures become negative.

1) When water table is 6 m below ground level as shown in Fig.3(a), find the normal effective stress



2) When water table is 3 m above ground level as shown in Fig.3(b), find the normal effective stress $\sigma'_{zB}(kN/m^2)$ at a depth of 3m.

(5) Calculate the force due to active earth pressure $P_A(kN/m)$ and the force due to passive earth pressure $P_P(kN/m)$ acting on the retaining wall shown in Fig.4. The friction angle of soil behind the wall is $\varphi = 20^\circ$ and the unit weight of soil is $\gamma_t = 17.0 \text{kN/m}^3$. The friction angle of wall surface is $\delta = 0^\circ$.

(15) 19th, November, 18:15~19:45

International Program, Department of Civil and Environmental Engineering Answer sheet for Mid Fall Term Exam, Soil Mechanics, 2014

